Description
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
Input
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
Sample Input
5 1 2 1 1 3 2 1 4 1 2 5 3
Sample Output
13/25 【样例说明】 13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。 【数据规模】 对于100%的数据,n<=20000。
Solution
点分裸题,只需要统计一下子树到根的距离%3为0,1,2的剩下的就是裸的点分了(和模板类似)
Code
1 #include2 #include 3 #include 4 #define N (20000+100) 5 using namespace std; 6 struct node 7 { 8 int to,next,len; 9 }edge[N*2];10 int n,sum,root,t0,t1,t2,ans;11 int head[N],num_edge;12 int depth[N],d[N],size[N],maxn[N];13 bool vis[N];14 15 void add(int u,int v,int l)16 {17 edge[++num_edge].to=v;18 edge[num_edge].len=l;19 edge[num_edge].next=head[u];20 head[u]=num_edge;21 }22 23 void Get_root(int x,int fa)24 {25 size[x]=1;maxn[x]=0;26 for (int i=head[x];i!=0;i=edge[i].next)27 if (!vis[edge[i].to] && edge[i].to!=fa)28 {29 Get_root(edge[i].to,x);30 size[x]+=size[edge[i].to];31 maxn[x]=max(maxn[x],size[edge[i].to]);32 }33 maxn[x]=max(maxn[x],sum-size[x]);34 if (maxn[x]